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We take as given the idea of distinction and the idea of 
indication, and that we cannot make an indication without 
drawing a distinction. We take, therefore, the form of distinction 
for the form. 

Definition 

Distinction is perfect continence. 

That is to say, a distinction is drawn by arranging a boundary 
with separate sides so that a point on one side cannot reach 
the other side without crossing the boundary. For example, 
in a plane space a circle draws a distinction. 

Once a distinction is drawn, the spaces, states, or contents 
on each side of the boundary, being distinct, can be indicated. 

There can be no distinction without motive, and there can 
be no motive unless contents are seen to differ in value. 

If a content is of value, a name can be taken to indicate this 
value. 

Thus the calling of the name can be identified with the value 
of the content. 

Axiom 1. The law of calling 

The value of a call made again is the value of the call. 

That is to say, if a name is called and then is called again, 
the value indicated by the two calls taken together is the value 
indicated by one of them. 

That is to say, for any name, to recall is to call. 

T H E F O R M 



THE FORM 

Equally, if the content is of value, a motive or an intention 
or instruction to cross the boundary into the content can be 
taken to indicate this value. 

Thus, also, the crossing of the boundary can be identified 
with the value of the content. 

Axiom 2 . The law of crossing 

The value of a crossing made again is not the value of the 
crossing. 

That is to say, if it is intended to cross a boundary and then 
it is intended to cross it again, the value indicated by the two 
intentions taken together is the value indicated by none of them. 

That is to say, for any boundary, to recross is not to cross. 



F O R M S T A K E N O U T O F T H E F O R M 
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Construction 

Draw a distinction. 

Content 

Call it the first distinction. 

Call the space in which it is drawn the space severed or cloven 
by the distinction. 

Call the parts of the space shaped by the severance or cleft 
the sides of the distinction or, alternatively, the spaces, states, 
or contents distinguished by the distinction. 

Intent 

Let any mark, token, or sign be taken in any'way witit br 
with regard to the distinction as a signal. 

Call the use of any signal its intent. . :r -, 

First canon. Convention of intention 

Let the intent of a signal be limited to the use allowed to it. 

Call this the convention of intention. In general, what is 
not allowed is forbidden. 



FORMS TAKEN OUT OF THE FORM 

Knowledge 

Let a state distinguished by the distinction be marked with 
a mark ; 

"1 
of distinction. 

Let the state be known by the mark. 

Call the state the marked state. 

Form 

Call the space cloven by any distinction, together with the 
entire content of the space, the form of the distinction. 

Call the form of the first distinction the form. 

Name 
Let there be a form distinct from the form. 
Let the mark of distinction be copied out of the form into 

such another form. 

Call any such copy of the mark a token of the mark. 

Let any token of the mark be called as a name of the marked 
state. 

Let the name indicate the state. 

Arrangement 
Call the form of a number of tokens considered with regard 

to one another (that is to say, considered in the same form) 
an arrangement. 

Expression 

Call any arrangement intended as an indicator an expression. 



FORM, ARRANGEMENT, EXPRESSION 

Value 

Call a state indicated by an expression the value o 
expression. 

Equivalence 

Call expressions of the same value equivalent. 

Let a sign 

of equivalence be written between equivalent expressions. 

Now, by axiom 1, 

Call this the form of condensation. 

Instruction 

Call the state not marked with the mark the unmarked state. 

Let each token of the mark be seen to cleave the space into 
which it is copied. That is to say, let each token be a distinction 
in its own form. 

Call the concave side of a token its inside. 

Let any token be intended as an instruction to cross the 
boundary of the first distinction. 

Let the crossing be from the state indicated on the inside of 
the token. 

Let the crossing be to the state indicated by the token. 

Let a space with no token indicate the unmarked state. 

Now, by axiom 2 , y> 

~l ~l 

Call this the form of cancellation. 



FORMS TAKEN OUT OF THE FORM 

Equation 

Call an indication of equivalent expressions an equation. 

Primitive equation 

Call the form of condensation a primitive equation. . 

Call the form of cancellation a primitive equation. . -( - . 

Let there be no other primitive equation. 

Simple expression 

Note that the three forms of arrangement, | | , | , 

I, and the one absence of form, , taken from the 

primitive equations are all, by convention, expressions. 

Call any expression consisting of an empty token simple. 

Call any expression consisting of an empty space simple. * 

Let there be no other simple expression. 

Operation 

We now see that if a state can be indicated by using a token 
as a name it can be indicated by using the token as an instruction 
subject to convention. Any token may be taken, therefore, to 
be an instruction for the operation of an intention, and may 
itself be given a name 

cross . . 

to indicate what the intention is. 

Relation 

Having decided that the form of every token called cross is 
to be perfectly continent, we have allowed only one kind of 
relation between crosses: continence. 



EQUATION, OPERATION, RELATION 

Let the intent of this relation be restricted so that a cross is 
said to contain what is on its inside and not to contain what is 
not on its inside. 

Depth 

In an arrangement a standing in a space s, call the number n 
of crosses that must be crossed to reach a space sn from * 
the depth of sn with regard to s. 

Call a space reached by the greatest number of inwards 
crossings from 5 a deepest space in a. 

Call the space reached by no crossing from s the shallowest 
space in a. 

Thus 

so = s. 

Let any cross standing in any space in a cross c be said to be 
contained in c. 

Let any cross standing in the shallowest space in c be said 
to stand under, or to be covered by, c. 

Unwritten cross 
Suppose any so to be surrounded by an unwritten cross. 

Call the crosses standing under any cross c, written or 
unwritten, the crosses pervaded by the shallowest space in c. 

Pervasive space 
Let any given space sn be said to pervade any arrangement 

in which sn is the shallowest space. 

Call the space s pervading an arrangement a, whether or not 
a is the only arrangement pervaded by s, the pervasive space 
of a. 



The conception of the form lies in the desire to distinguish. 

Granted this desire, we cannot escape the form, although we 
can see it any way we please. 

The calculus of indications is a way of regarding the form. 

We can see the calculus by the form and the form in the 
calculus unaided and unhindered by the intervention of laws, 
initials, theorems, or consequences. 

The experiments below illustrate one of the indefinite number 
of possible ways of doing this. 

We may note that in these experiments the sign 

may stand for the words 

is confused with. 

We may also note that the sides of each distinction experi-
mentally drawn have two kinds of reference. 

The first, or explicit, reference is to the value of a side, 
according to how it is marked. 

The second, or implicit, reference is to an outside observer. 
That is to say, the outside is the side from which a distinction 
is supposed to be seen. 

RE-ENTRY INTO THE FORM 



RE-ENTRY INTO THE FORM 

First experiment 

In a plane space, draw a circle. 

Let a mark m indicate the outside of the circumference. 

Let no mark indicate the inside of the circumference. 

Let the mark m be a circle. 

Re-enter the mark into the form of the circle. 



Now the circle and the mark cannot (in respect of their 
relevant properties) be distinguished, and so 

Second experiment 

In a plane space, draw a circle. 

Let a mark m indicate the inside of the circumference. 

Let no mark indicate the outside of the circumference. 

Let the value of a mark be its value to the space in which it 
stands. That is to say, let the value of a mark be to the space 
outside the mark. 

Now the space outside the circumference is unmarked. 



RE-ENTRY INTO THE FORM 

Therefore, by valuation, 

Let the mark m be a circle. 

Re-enter the mark into the form of the circle 

Now, by valuation, 

Third experiment 

In a plane space, draw a circle. 



EXPERIMENT 3 

Let a mark m indicate the outside of the circumference. 

Let a similar mark m indicate the inside of the circumference. 

Now, since a mark m indicates both sides of the circumference, 
they cannot, in respect of value, be distinguished. 

Again let the mark m be a circle. 

Re-enter the mark into the form of the circle. 

Now, because of identical markings, the original circle 
cannot distinguish different values. 

Therefore, it is not, in this respect, a distinction. 



RE-ENTRY INTO THE FORM 

Therefore it may be deleted without loss or gain to the space 
in which it stands. 

o-oo 
But we found in the first experiment that 

oo-o 
Therefore, 

0=0. 
and this is not inconsistent with the finding of the second 
experiment that 

since we have done here in two steps which was done there in 
one. 



Fourth experiment 

In a plane space, draw a circle. 

EXPERIMENT 4 

Let the outside of the circumference be unmarked. 

Let the inside of the circumference be unmarked. 

But we saw in the first experiment that 

and that therefore, by reversing the purifying procedure there, 



In the experiments above, imagine the circles to be forms 
and their circumferences to be the distinctions shaping the 
spaces of these forms. 

In this conception a distinction drawn in any space is a mark 
distinguishing the space. Equally and conversely, any mark 
in a space draws a distinction. 

We see now that the first distinction, the mark, and the 
observer are not only interchangeable, but, in the form, identical. 

The value of a circumference to the space outside must be, 
therefore, the value of the mark, since the mark now distinguishes 
this space. 

An observer, since he distinguishes the space he occupies, 
is also a mark. 



N O T E S 

Chapter 1 
Although it says somewhat more, all that the reader needs 

to take with him from Chapter 1 are the definition of distinction 
as a form of closure, and the two axioms which rest with this 
definition. 

Chapter 2 
It may be helpful at this stage to realize that the primary form 

of mathematical communication is not description, but injunc-
tion. In this respect it is comparable with practical art forms 
like cookery, in which the taste of a cake, although literally 
indescribable, can be conveyed to a reader in the form of a set 
of injunctions called a recipe. Music is a similar art form, 
the composer does not even attempt to describe the set of 
sounds he has in mind, much less the set of feelings occasioned 
through them, but writes down a set of commands which, if 
they are obeyed by the reader, can result in a reproduction, to 
the reader, of the composer's original experience. 

Where Wittgenstein says [4, proposition 7] 

whereof one cannot speak, 
thereof one must be silent 

he seems to be considering descriptive speech only. He notes 
elsewhere that the mathematician, descriptively speaking, says 
nothing. The same may be said of the composer, who, if he 
were to attempt a description (i.e. a limitation) of the set of 
ecstasies apparent through (i.e. unlimited by) his composition, 
would fail miserably and necessarily. But neither the composer 
nor the mathematician must, for this reason, be silent. 



In his introduction to the Tractatus, Russell expresses what 
thus seems to be a justifiable doubt in respect of the Tightness 
of Wittgenstein's last proposition when he says [p 22] 

what causes hesitation is the fact that, after all, Mr Witt-
genstein manages to say a good deal about what cannot be 
said, thus suggesting to the sceptical reader that possibly 
there may be some loophole through a hierarchy of languages, 
or by some other exit. 

The exit, as we have seen it here, is evident in the injunctive 
faculty of language. 

Even natural science appears to be more dependent upon 
injunction than we are usually prepared to admit. The pro-
fessional initiation of the man of science consists not so much 
in reading the proper textbooks, as in obeying injunctions such 
as 'look down that microscope'. But it is not out of order for 
men of science, having looked down the microscope, now to 
describe to each other, and to discuss amongst themselves, 
what they have seen, and to write papers and textbooks describ-
ing it. Similarly, it is not out of order for mathematicians, each 
having obeyed a given set of injunctions, to describe to each 
other, and to discuss amongst themselves, what they have seen, 
and to write papers and textbooks describing it. But in each case, 
the description is dependent upon, and secondary to, the set 
of injunctions having been obeyed first. 

When we attempt to realize a piece of music composed by 
another person, we do so by illustrating, to ourselves, with a 
musical instrument of some kind, the composer's commands. 
Similarly, if we arc to realize a piece of mathematics, we must 
find a way of illustrating, to ourselves, the commands of the 
mathematician. The normal way to do this is with some kind 
of scorer and a flat scorable surface, for example a finger and 
a tide-flattened stretch of sand, or a pencil and a piece of paper. 
Taking such an aid to illustration, we may now begin to carry 
out the commands in Chapter 2. 

First we may illustrate a form, such as a circle or near-circle. 
A flat piece of paper, being itself illustrative of a plane surface, 
is a useful mathematical instrument for this purpose, since we 



happen to know that a circle in such a space does in fact draw 
a distinction. (If, for example, we had chosen to write upon the 
surface of a torus, the circle might not have drawn a distinction.) 

When we come to the injunction 

let there be a form distinct from the form 

we can illustrate it by taking a fresh piece of paper (or another 
stretch of sand). Now, in this separate form, we may illustrate 
the command 

let the mark of distinction be copied 
out of the form into such another form. 

It is not necessary for the reader to confine his illustrations 
to the commands in the text. He may wander at will, inventing 
his own illustrations, either consistent or inconsistent with the 
textual commands. Only thus, by his own explorations, will 
he come to see distinctly the bounds or laws of the world from 
which the mathematician is speaking. Similarly, if the reader 
does not follow the argument at any point, it is never necessary 
for him to remain stuck at that point until he sees how to pro-
ceed. We cannot fully understand the beginning of anything 
until we see the end. What the mathematician aims to do is to 
give a complete picture, the order of what he presents being 
essential, the order in which he presents it being to some degree 
arbitrary. The reader may quite legitimately change the arbitrary 
order as he pleases. 

We may distinguish, in the essential order, commands, which 
call something into being, conjure up some order of being, call 
to order, and which are usually carried in permissive forms 
such as 

let there be so-and-so, 

or occasionally in more specifically active forms like 

. drop a perpendicular; 



names, given to be used as reference points or tokens; in 
relation with the operation of instructions, which are designed 
to take effect within whatever universe has already been com-
manded or called to order. The institution or ceremony of 
naming is usually carried in the form 

call so-and-so such-and-such, 

and the call may be transmitted in both directions, as with the 
sign = , so that by calling so-and-so such-and-such we may also 
call such-and-such so-and-so. Naming may thus be considered 
to be without direction, or, alternatively, pan-directional. By 
contrast, instruction is directional, in that it demands a crossing 
from a state or condition, with its own name, to a different 
state or condition, with another name, such that the name of 
the former may not be called as a name of the latter. 

The more important structures of command are sometimes 
called canons. They are the ways in which the guiding injunctions 
appear to group themselves in constellations, and are thus by 
no means independent of each other. A canon bears the dis-
tinction of being outside (i.e. describing) the system under 
construction, but a command to construct (e.g. 'draw a dis-
tinction'), even though it may be of central importance, is not 
a canon. A canon is an order, or set of orders, to permit or allow, 
but not to construct or create. 

The instructions which are to take effect, within the creation 
and its permission, must be distinguished as those in the actual 
text of calculation, designated by the constants or operators 
of the calculus, and those in the context, which may themselves 
be instructions to name something with a particular name so 
that it can be referred to again without redescription. 

Later on (Chapter 4) we shall come to consider what we call 
the proofs or justifications of certain statements. What we shall 
be showing, here, is that such statements are implicit in, or 
follow from, or are permitted by, the canons or standing orders 
hitherto convened or called to presence. Thus, in the structure 
of a proof, we shall find injunctions of the form 



consider such-and-such, ! 

suppose so-and-so, 

which are not commands, but invitations or directions to a way 
in which the implication can be clearly and wholly followed. 

In conceiving the calculus of indications, we begin at a point 
of such degeneracy as to find that the ideas of description, 
indication, name, and instruction can amount to the same thing. 
It is of some importance for the reader to realize this for himself, 
or he will find it difficult to understand (although he may follow) 
the argument (p 5) leading to the second primitive equation. 

In the command ; 

let the crossing be to the 
state indicated by the token , 

we at once make the token doubly meaningful, first as an 
instruction to cross, secondly as an indicator (and thus a name) 
of where the crossing has taken us. It was an open question, 
before obeying this command, whether the token would carry 
an indication at all. But the command determines without 
ambiguity the state to which the crossing is made and thus, 
without ambiguity, the indication which the token will hence-
forth carry. 

This double carry of name-with-instruction and instruction-
with-name is usually referred to (in the language of mathe-
matics) as a structure in which ideas or meanings degenerate. 
We may also refer to it (in the language of psychology) as a 
place where the ideas condense in one symbol. It is this condensa-
tion which gives the symbol its power. For in mathematics, 
as in other disciplines, the power of a system resides in its 
elegance (literally, its capacity to pick out or elect), which is 
achieved by condensing as much as is needed into as little as is 
needed, and so making that little as free from irrelevance (or 
from elaboration) as is allowed by the necessity of writing it 
out and reading it in with ease and without error. 

We may now helpfully distinguish between an elegance in 



the calculus, which can make it easy to use, and an elegance 
in the descriptive context, which can make it hard to follow. 
We are accustomed, in ordinary life, to having indications of 
what to do confirmed in several different ways, and when 
presented with an injunction, however clear and unambiguous, 
which, stripped to its bare minimum, indicates what to do once 
and in one way only, we might refuse it. (We may consider 
how far, in ordinary life, we must observe the spirit rather than 
the letter of an injunction, and must develop the habitual 
capacity to interpret any injunction we receive by screening it 
against other indications of what we ought to do. In mathe-
matics we have to unlearn this habit in favour of accepting an 
injunction literally and at once. This is why an author of 
mathematics must take such great pains to make his injunctions 
mutually permissive. Otherwise these pains, which rightly 
rest with the author, will fall with sickening import upon the 
reader, who, by virtue of his relationship with respect to the 
author, may be in no position to accept them.) 

The second of the two primitive equations of the primary 
arithmetic can be derived less elegantly, but in a way that is 
possibly easier to follow, by allowing substitution prematurely. 

Suppose we indicate the marked state by a token m, and, as 
before, let the absence of a token indicate the unmarked state. 

Let a bracket round any indicator indicate, in the space 
outside the bracket, the state other than that indicated inside 
the bracket. 

Thus 

and 



Substituting, we find 

which is the second primitive equation. 

The condition that one of the primary states shall be nameless 
is mandatory for this elimination. 

The first primitive equation can also be derived a different 
way. 

Imagine a blind animal able only to distinguish inside from 
outside. A space with what appears to us as a number of 
distinct insides and one outside, such as 

OO. 
will appear to it, upon exploration, to be indistinguishable 
from 

O. 
The ideas described in the text at this point do not go beyond 
what this animal can find out for itself, and so in Its world, 
such as it is, 

ooo. 



We may note that even if this animal can count its crossings, 
it still will not be able to distinguish two divisions from one, 
although it will now have an alternative way of distinguishing 
inside from outside which no longer depends on knowing 
which is which. 

Reconsidering the first command, 

draw a distinction, 

we note that it may equally well be expressed in such ways as 

let there be a distinction, 

find a distinction, 

see a distinction, 

describe a distinction, 

define a distinction, 
or 

let a distinction be drawn, 

for we have here reached a place so primitive that active and 
passive, as well as a number of other more peripheral opposites, 
have long since condensed together, and almost any form of 
words will suggest more categories than there really are. 

Chapter 3 
The hypothesis of simplification is the first overt convention 

that is put to use before it has been justified. But it has a pre-
cursor in the injunction 'let a state indicated by an expression 
be the value of the expression' in the last chapter, which allows 
value to an expression only in case not less and not more than 
one state is indicated by the expression. The use of both the 
injunction and the convention are eventually justified in the 
theorems of representation. Other cases of delayed justification 
will be found later, a notable example being theorem 16. 

We may ask why we do not justify such a convention at once 
when it is given. The answer, in most cases, is that the justifica-
tion (although valid) would be meaningless until we had first 



become acquainted with the use of the principle which requires 
justifying. In other words, before we can reasonably justify 
a deep lying principle, we first need to be familiar with how it 
works. 

We might suppose this practice of deferred justification to 
be operative elsewhere. It is a notable fact that in mathematics 
very few useful theorems remain unproved. By 'useful' I do not 
necessarily mean with practical application outside mathe-
matics. A theorem can be useful mathematically, for example 
to justify another theorem. 

One of the most 'useless' theorems in mathematics is Gold-
bach's conjecture. We do not frequently find ourselves saying 
'if only we knew that every even number greater than 2 could 
be represented as a sum of two prime numbers, we should be 
able to show tha t . . .' D J Spencer Brown, in a private com-
munication, suggested that their apparent uselessness is not 
exactly a reason why such theorems cannot be proved, but is a 
reason for supposing that if a valid proof were given today, 
nobody would recognize it as such, since nobody is yet familiar 
with the ground on which such a proof would rest. I shall have 
more to say about this in the notes to Chapters 8 and 11. 

Chapter 4 
In all mathematics it becomes apparent, at some stage, that 

we have for some time been following a rule without being 
consciously aware of the fact. This might be described as the 
use of a covert convention. A recognizable aspect of the 
advancement of mathematics consists in the advancement of the 
consciousness of what we are doing, whereby the covert 
becomes overt. Mathematics is in this respect psychedelic. 

The nearer we are to the beginning of what we set out to 
achieve, the more likely we are to find, there, procedures which 
have been adopted without comment. Their use can be con-
sidered as the presence of an arrangement in the absence of an 
agreement. For example, in the statement and proof of theorem 
1 it is arranged (although not agreed) that we shall write on a 
plane surface. If we write on the surface of a torus the theorem 
is not true. (Or to make it true, we must be more explicit.) 



~p\pq\ = 

whereas we prove the weaker version> 

The stronger version is plainly true, but we shall find that we 
are able to demonstrate it as a consequence in the algebra. 
We therefore prove, and use as the first algebraic initial, the 
weaker version. 

The fact that men have for centuries used a plane surface 
for writing means that, at this point in the text, both author 
and reader are ready to be conned into the assumption of a 
plane writing surface without question. But, like any other 
assumption, it is not unquestionable, and the fact that we can 
question it here means that we can question it elsewhere. In 
fact we have found a common but hitherto unspoken assump-
tion underlying what is written in mathematics, notably a 
plane surface (more generally, a surface of genus 0, although 
we shall see later (pp 102 sq) that this further generalization 
forces us to recognize another hitherto silent assumption). 
Moreover, it is now evident that if a different surface is used, 
what is written on it, although identical in marking, may be 
not identical in meaning. 

In general there is an order of precedence amongst theorems, 
so that theorems which can be proved more easily with the help 
of other theorems are placed so as to be proved after such other 
theorems. This order is not rigid. For example, having proved 
theorem 3, we use what we found in the proof to prove theorem 
4. But theorems 3 and 4 are symmetrical, their order depending 
only on whether we wish to proceed from simplicity to com-
plexity or from complexity to simplicity. The reader might try, 
if he wishes, to prove theorem 4 first without the aid of theorem 
3, after which he will be able to prove theorem 3 analogously 
to the way theorem 4 is proved in the text. 

It will be observed that the symbolic representation of 
theorem 8 is less strong than the theorem itself. The theorem • 
is consistent with 



In theorem 9 we see the difference between our use of the 
verb divide and our use of the verb cleave. Any division of a 
space results in otherwise indistinguishable divisions of a state, 
which are all at the same level, whereas a severance or cleavage 
shapes distinguishable states, which are at different levels. 

An idea of the relative strengths of severance and division 
may be gathered from the fact that the rule of number is 
sufficient to unify a divided space, but not to void a cloven 
space. 

Chapter 5 
In eliciting rules for algebraic manipulation the text explicitly 

refers to the existence of systems of calculation other than the 
system described. This reference is both deliberate and in-
essential. It marks the level at which these systems are usually 
fitted out with their false, or truncated, or postulated, origins. 

It is deliberate to inform the reader that, in the system of 
calculation we are building, we are not departing from the 
basic methods of other systems. Thus what we arrive at, in the 
end, will serve to elucidate them, as well as to fit them with their 
true origin. But, at the same time, it is important for the reader 
to see that the reference to other systems is inessential to the 
development of the argument in the text. For here it stands or 
falls on its own merit, dependent in no way for its validity 
upon agreement or disagreement with other systems. Thus 
rules 1 and 2, as can be seen from their justifications, say 
nothing that has not, in the text, already been said. They merely 
summarize the commands and instructions that will be relevant 
to the new kind of calculation we are about to undertake. 

The replacement referred to in rule 2 is usually confined to 
independent variable expressions of simple (i.e. literal) form, 
and is in fact so confined in the text. But the greater licence 
granted by the rule is not devoid of significant application, if 
required. 

Chapter 6 
By the revelation and incorporation of its own origin, the 

primary algebra provides immediate access to the nature of the 



relationship between operators and operands. An operand in 
the algebra is merely a conjectured presence or absence of an 
operator. 

This partial identity of operand and operator, which is not 
confined to Boolean algebras, can in fact be seen if we extend 
more familiar descriptions, although in these descriptions it is 
not so obvious. For example, we can find it by taking the Boolean 
operators v (usually interpreted as the logical 'or', but here 
used purely mathematically) and . (usually interpreted as the 
logical 'and', but here again used purely mathematically), 
freeing their scope (as, by the principle of relevance, we may), 
freeing the order of the variables within their scope (as, by the 
same principle, we also may), and extrapolating mathematically 
to the case of no variable, 

. . . ( d i e ) v . (a b) V . (a) v . () v . 
permute 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
permute 1 1 0 1 0 1 0 1 0 0 0 0 
permute 1 0 0 1 0 0 0 0 0 
permute 0 0 0 0 0 

which shows quite plainly that we have no need of the arith-
metical forms 0, 1 (or z, u, or F, T, etc), since we can equate 
them with () v and (). respectively. We can now write a Boolean 
variable of the form a, b, etc wherever we conjecture the presence 
of one of these two fundamental particles, but are not sure (or 
don't care) which. The functional tables for v and . of two 
variables thus become 

(a b ) v 
(0V 0 V ) ( ) V 0 V 

(0V 0- ) 0- 0 V 

( 0 - 0- ) ()• ()• , , 
the permutation being assumed. 

J l , J2 are not the only two initials which may be taken to 
determine the primary algebra. We see 1 1 from Huntington's 
fourth postulate-set that we could have used C5, C6. 

1 1 Edward V Huntington, Trans. Arner. Math. Soc, 35 (1933) 280-5. 



The demonstration of J l , J2 from C5, C6 is both difficult 
and tedious. This is evidently because we find two basic alge-
braic principles, in one of which a variable is transplanted in 
the expression, and in the other of which it is eliminated from 
it. Provided we keep these two principles apart, subsequent 
demonstrations are not difficult. If, as in Huntington's two 
equations, they are inter-mingled, then their subsequent un-
ravelling can be difficult. 

Our expression here of Huntington's equations in the form 
of C5, C6 is not in the form in which he originally expressed 
them. He was hampered by the crippling assumptions of order 
relevance and binary scope, with which we have not at any stage 
weakened the primary algebra. For this reason he found it 
necessary to give two more equations to complete the set. 
C5 and C6, considered as initials, are of interest chiefly because 
they employ only two distinct variables, whereas J l and J2 
employ three. 

I had at first supposed the demonstration of CI to be impos-
sible from J l and 52 as they stand. In 1965 a pupil, Mr John 
Dawes, produced a rather long proof to the contrary, so the 
following year I set the problem to my class as an exercise, and 
was rewarded with a most elegant demonstration by Mr D A 
Utting. I use Mr Utting's demonstration, slightly modified, in 
the text. 

Although, superficially, it may look less efficient, it is, 
eventually, more natural and convenient to use names rather 
than numbers to identify the more important consequences, as 
indeed it is with theorems, since they do not in general form an 
ordered set. 

In naming such consequences I have aimed to find what 
seems appropriate as a description of the named process, as 
it appears in the algebra, without doing violence to its arith-
metical origin. In some places both the forms and the names are 
recognizably similar to those of other authors who have 
determined Boolean algebras. In most such cases hitherto, the 
commonly used name describes only one of the directions in 
which the step can be taken. What is called Boolean expansion 
is an example. In such a case, where the name is appropriate 



to the step as taken in one direction only, I have introduced an 
antonym for the other direction, and given a generic name to 
cover both. In other recognizable cases I have found what seems 
to me to be a more appropriate name, such as occultation for 
what Whitehead called1 2 absorption. The occulting part of the 
expression is not so much absorbed in the remainder as eclipsed 
by it. This can be seen quite plainly in the arithmetic, or alter-
natively if the expression is illustrated with a Venn diagram. 
To the best of my knowledge, Peirce was the only previous author 
to recognize, as such, what I call position. He called 1 3 it 
erasure, thus again drawing attention to only one direction of 
application. 

I do not suppose all the names will always stick. Familiarity 
tends to produce a kind of in-slang, often more appropriate, 
in its place, than what is deemed to be academically proper or 
seemly. For example, the engineering application of consequence 
2 has produced the more homely 'breed' for 'regenerate', and 
'revert' for 'degenerate', and it is of interest to note that the 
transformations of this consequence are immediate images of 
what Proclus called 1 4 npooSog and iTTioTpo<j>rj, translated by 
Dodds into procession and reversion. 

The fact that descriptive names such as 'transposition' and 
'integration' are differently applied elsewhere in mathematics 
(and, indeed, elsewhere in this book) does not appear to be 
a reason for avoiding their use in the senses defined in this 
chapter. The deeper the level of investigation, the harder it 
becomes to find words strong enough to cover what is found 
there, and in all cases my use of language to describe primitive 
processes draws on a greater power of signification than is 
needed for its more superficial and specialized uses. 

One of the most beautiful facts emerging from mathematical 

1 2 Alfred North Whitehead, A treatise on universal algebra, Vol. I , 
Cambridge, 1898, p 36. 

1 3 Charles Sanders Peirce, Collected papers, Vol. IV, Cambridge, 
Massachusetts, 1933, pp 13-18. 

1 4 nPOKAOYAIAAOXOYZTOIXEIQEIZQEOAOriKHviiib 
a translation by E R Dodds, 2nd edition, Oxford, 1963. 



studies is this very potent relationship between the mathematical 
process and ordinary language. There seems to be no mathe-
matical idea of any importance or profundity that is not mirrored, 
with an almost uncanny accuracy, in the common use of words, 
and this appears especially true when we consider words in 
their original, and sometimes long forgotten, senses. 

The fact that a word may have different, but related, meanings 
at different, but related, levels of consideration does not norm-
ally render communication impossible. On the contrary, it is 
evident that communication of any but the most trivial ideas 
would be impossible without it. 

Since at this point in the text the fundamental forms of 
mathematical communication are now practically complete, 
it may be a revealing exercise to retranslate into longhand 
some of the shorthand forms developed by application of the 
canon of contracting reference. For this purpose we take the 
statement and demonstration of consequence 9 (p 35). In 
words and figures it could run thus. 

The ninth consequence, called crosstransposition, or C9 
for short, may be stated as follows. 

b cross r cross cross all a 
cross r cross cross 2 x cross 
r cross 2 y cross r cross 2 
cross all 

expresses the same value as 

r cross ab cross all rxy cross 3. 

When the step allowed by this equation is taken from the 
former to the latter expression, it is called to crosstranspose 
or collect, and when taken in reverse it is called to cross-
transpose or distribute. 

The equation can be demonstrated thus. 

b cross r cross cross all a 
cross r cross cross 2 x cross 
r cross 2 y cross r cross 2 
cross all 



NOTES 

may be changed to 

b cross r cross cross all a 
cross r cross cross 2 xy 
cross 2 r cross 2 cross all 

by using CI , J2, and then CI again. This in turn may be 
changed to 

baxy cross 2 r cross 2 cross 
all rxy cross 2 r cross 2 
cross 2 

by C8 and then by applying CI three times, etc. 

We may observe that, in expressions, the mathematical 
language has become entirely visual, there is no proper spoken 
form, so that in reverbalizing it we must encode it in a form 
suitable for ordinary speech. Thus, although the mathematical 
form of an expression is clear, the reverbalized form is obscure. 

The main difficulty in translating from the written to the 
verbal form comes from the fact that in mathematical writing 
we are free to mark the two dimensions of the plane, whereas 
in speech we can mark only the one dimension of time. 

Much that is unnecessary and obstructive in mathematics 
today appears to be vestigial of this limitation of the spoken 
word. For example, in ordinary speech, to avoid direct reference 
to a plurality of dimensions, we have to fix the scope of constants 
such as 'and' and 'or', and this we can most conveniently do 
at the level of the first plural number. But to carry the fixation 
over into the written form is to fail to realize the freedom offered 
by an added dimension. This in turn can lead us to suppose that 
the binary scope of operators assumed for the convenience of 
representing them in one dimension is something of relevance 
to the actual form of their operation, which, in the case of 
simple operators even at the verbal level, it is not. 

Chapter 7 
In the description of theorem 14 'the constant' refers to the 

operative constant. There are two constants in the calculus, 



a mark or operator, and a blank or void. Reference to 'the 
constant' without qualification will usually be taken to denote 
the operator rather than the void. 

Chapter 8 
We have already distinguished, in the text, between demon-

stration and proof. In making this distinction, which appears 
quite natural, we see at once that a proof can never be justified 
in the same way as a demonstration. Whereas in a demonstration 
we can see that the instructions already recorded are properly 
obeyed, we cannot avail ourselves of this procedure in the case 
of a proof. 

In a proof we are dealing in terms which are outside of the 
calculus, and thus not amenable to its instructions. In any 
attempt to render such proofs themselves subject to instruction, 
we succeed only at the cost of making another calculus, inside 
of which the original calculus is cradled, and outside of which 
we shall again see forms which are amenable to proof but not 
demonstration. 

The validity of a proof thus rests not in our common motiva-
tion by a set of instructions, but in our common experience of 
a state of affairs. This experience usually includes the ability 
to reason which has been formalized in logic, but is not con-
fined to it. Nearly all proofs, whether about a system containing 
numbers or not, use the common ability to compute, i.e. to 
count* in either direction, and ideas stemming from our experi-
ence of this ability. 

It seems open to question why we regard the proof of a 
theorem as amounting to the same degree of certainty as the 
demonstration of a consequence. It is not a question which, 
at first sight, admits of an easy answer. If an answer is possible, 
it would seem to lie in the concept of experience. We gain 
experience of living representative processes, in particular of 

* Although count rests on putare — prune, correct, (and hence) reckon, 
the word reason comes from reri = count, calculate, reckon. Thus the 
reasoning and computing activities of proof were originally considered as 
one. We may note further that argue is based on arguere = clarify 
(literally 'make silver'). We thus find a whole constellation of words to do 
with the process of getting it right. 



argument and of counting forwards and backwards in units, 
and through this experience become quite certain, in our own 
minds, of the validity of using it to substantiate a proof. But 
since the procedures of the proof are not, themselves, yet 
codified in a calculus (although they may eventually become so), 
our certainty at this stage must be deemed to be intuitive. 
We can achieve a demonstration simply by following instructions, 
although we may be unfamiliar with the system in which the 
instructions are obeyed. But in proving a theorem, if we have 
not already codified the structure of the proof in the form of a 
calculus, we must at least be familiar with, or experienced in, 
whatever it is we take to be the ground of the proof, otherwise 
we shall not see it as a proof. 

Another way of regarding the relationship between demon-
stration and proof, which adds support to the proposition 
that the degree of certainty of a proof is equal to that of a 
demonstration, is to consider it as the boundary dividing the 
state of proof from the state of demonstration. A demonstration, 
we remember, occurs inside the calculus, a proof outside. 
The boundary between them is thus a shared boundary, and is 
what is approached, in one or the other direction, according to 
whether we are demonstrating a consequence or proving a 
theorem. Thus consequences and theorems can be seen to bear 
to each other a fitting relationship. 

But the boundary marking their relationship, although shared, 
is (like the existential boundary (see pp 124 sq)) seen from one 
side only, since if we know the ground on which a demon-
stration rests (i.e. provided we understand the formal, as 
distinct from the pragmatic, reasons for the initial equations 
we employ, and so do not have to postulate them), the demon-
stration can be seen as a proof by implication, although a proof 
is never seen as a demonstration. We observe, in fact, that 
demonstration bears the same relationship to proof as initial 
equation bears to axiom, but we should also note that the 
relationship is evident for arithmetic only, and is lost when we 
make the departure into algebra. This appears to be why 
algebras are commonly presented without axioms, in any proper 
sense of the word. 

The fact that a proof is a way of making apparently obvious 



what was already latently so is of some mathematical interest. 
Although there are any number of distinct proofs of a given 
theorem, they can all, even so, be hard to find. In other words, 
we can set about trying to prove a theorem in a large number 
of wrong ways before coming across a right way. 

Even the analogy of seeking something cannot, in this context, 
be quite right. For what we find, eventually, is something we 
have known, and may well have been consciously aware of, 
all along. Thus we are not, in this sense, seeking something that 
has ever been hidden. The idea of performing a search can be 
unhelpful, or even positively obstructive, since searches are 
in general organized to find something which has been previously 
hidden, and is thus not open to view. 

In discovering a proof, we must do something more subtle 
than search. We must come to see the relevance, in respect 
of whatever statement it is we wish to justify, of some fact in 
full view, and of which, therefore, we are already constantly 
aware. Whereas we may know how to undertake a search for 
something we can not see, the subtlety of the technique of 
trying to 'find' something which we already can see may more 
easily escape our efforts. 

This might be a helpful moment to introduce a distinction 
between following a course of argument and understanding it. 
I take understanding to be the experience of what is understood 
in a wider context. In this sense, we do not fully understand a 
theorem until we are able to contain it in a more general theorem. 
We can nevertheless follow its proof, in the sense of coming to 
see its evidence, without understanding it in the wider sense in 
which it may rest. 

Following and understanding, like demonstrating and proving, 
are sometimes wrongly taken as synonymous. Very often a 
person is regarded as not understanding an argument, a process, 
a doctrine, when all that is certain is that he has not followed it. 
But his failure to follow may be quite deliberate, and may arise 
from the fact that he has understood what was presented to 
him, and does not follow it because he sees a shorter, or other-
wise more acceptable, path, although he might not, yet, know 
how to communicate it. 



Following may thus be associated particularly with doctrine, 
and doctrine demands an adherence to a particular way of 
saying or doing something. Understanding has to do with the 
fact that what ever is said or done can always be said or done a 
different way, and yet all ways remain the same. 

Chapter 9 
We observe that the idea of completeness cannot apply to a 

calculus as a whole, but only to a representation of one deter-
mination of it by another. What is questioned, in fact, is the 
completeness of an alternative form of expression. 

The paragon of such an alternative is the algebraic representa-
tion of an arithmetic, although we do in fact find a more central 
case of it in the arithmetical representation of a form. In the 
latter case, as we see from the theorems of representation, the 
idea of completeness condenses with that of consistency. In 
the less central case, the two ideas come apart. Thus the most 
primitive example of completeness, in its pure form, is to be 
found in algebraic representation. 

A fact to which Godel drew attention [5] is that an algebra 
which includes representations of addition and multiplication 
cannot fully account for an arithmetic of the natural numbers 
in which these operations are taken as elementary. Thus, in 
number theory, although certain relationships can be proved, 
no algebra can be constructed in which all such relationships 
are demonstrable. 

The advent of Godel's theorem has never seemed to me to be 
a reason for despair, as some investigators have taken it to be, 
but rather an occasion for celebration, since it confirms what 
men of mathematics have found from experience, notably that 
ordinary arithmetic is a richer ground for investigation than 
ordinary algebra. 

Chapter 10 
It is usual to prove the independence of initial equations 

indirectly1 5. It is not commonly observed, although it becomes 
1 6 following Edward V Huntington, Trans. Amer. Math. Soc, 5 

(1904) 288-309. 



evident when we consider it, that with a set of only two initials, 
a direct proof of their independence is always available, and 
I give such a proof in the text. 

An independence proof may be properly considered as an 
incompleteness proof of the calculus with the missing initial. 

Chapter 11 
The question of whether or not functions of themselves are 

allowable has been discussed at wearisome length by many 
authorities [cf 8] since Principia mathematica was published. The 
Whitehead-Russell argument for disallowing them is well known. 
It is the subject of a number of comments by Wittgenstein [4, 
propositions 5.241 sq]. (I use the Pears-McGuinness translation 
for what follows.) 

An operation, says Wittgenstein, is not the mark of a form, 
but of a relation between forms. Wittgenstein here sees what 
I call the mark of distinction between states, which he calls forms, 
and also sees its connexion with the idea of operation. He then 
remarks [5.251] that 

a function cannot be its own argument, whereas an 
operation can take one of its own results as its base. 

This applies only, in the strict sense, to single-valued functions. 
If we allow inverse and implicit functions, then the assertion 
above is untrue. A function of a variable, in the wider meaning 
with which it is defined in this chapter, is the result of a possible 
set of operations on the variable. Thus if an operation can take 
its own result as a base, the function determined by this opera-
tion can be its own argument. 

I shall proceed, in the light of this relaxation, to examine in 
some detail the analogy between Boolean equations and those 
of an ordinary numerical algebra. 

Boole maintained 1 6 that the equation with which he defined 
what he called the law of duality, notably 

1 6 George Boole, An investigation of the laws of thought, Cambridge, 
1854, p 50. ' 



This, as we see, is an equation of the first degree, being expres-
sible without subversion. The real form of the analogy with a 
numerical algebra may be illustrated as follows. 

Suppose 
px2 + qx + r = 0 

where p, q, r may stand for rational numbers. We can re-express 
this equation in the form 

F l x2 + ax + b - 0 

by calling q\p = a and rjp — b, and it may then be further 
transposed into 

x = —a H 
x 

is of the second degree. So it is, as stated, but by it he deter-
mines that, in his notation, all equations of degree > 1 shall be 
reduced to the first degree. In other words, it is an equation of 
the second degree only at the descriptive level, not in the algebra 
itself. 

The spuriousness of its alleged degree, considered in the 
algebra itself, is revealed by Boole's assertion in a footnote 
[p 50] that an equation of the third degree has no interpretation 
in his algebra. It has, as we shall presently see, but Boole 
appears at this point to have been overcome by his notation, 
which uses numerical forms for an algebra which is essentially 
non-numerical. 

Boole's equation 

is an analogue, in the primary algebra, of 

aa = a. 



In a Boolean algebra we are properly denied the mode of F l , 
but permitted the mode of F2, which is either continuous or, 
if we want to see it so, subversive. Thus an equation of any 
degree is both constructible and meaningful in a Boolean algebra, 
although not necessarily in the primary form of it. To reach a 
higher degree, all we need to do is to add a distinct subversion. 
The two modulator equations at the end of the chapter are both 
of degree > 2 . They were first developed in 1961, in collaboration 
with Mr D J Spencer-Brown, for special-purpose computer 
circuits. Such equations undertake an excursion to a higher order 
of infinity, and, although still expressible in subversive form, 
they cannot be represented in continuous form on a plane. 

The circuits represented by these equations, the latter being 
presently in use by British Railways, comprise, as far as we 
know, a first application of each of two inventions, notably 
the first construction of a device which counts entirely by 
'logic' (i.e. with switches only, and with no artificial time delays 
such as electrical condensers) and, in addition, the first use, in 
a switching circuit, of imaginary Boolean values in the course 
of the construction of a real answer. This latter might in fact 
be the first use of such imaginary values for any purpose, 
although it is my guess that Fermat (who was apparently too 
excellent a mathematician to make a false claim to a proof) 
used them in the proof of his great theorem, hence the 'truly 
remarkable' nature of his proof, as well as its length. 

The fact that imaginary values can be used to reason towards 
a real and certain answer, coupled with the fact that they 
are not so used in mathematical reasoning today, and also 
coupled with the fact that certain equations plainly cannot 
be solved without the use of imaginary values, means that 
there must be mathematical statements (whose truth or untruth 
is in fact perfectly decidable) which cannot be decided by the 
methods of reasoning to which we have hitherto restricted 
ourselves. 

Generally speaking, if we confine our reasoning to an interpre-
tation of Boolean equations of the first degree only, we should 
expect to find theorems which will always defy decision, and the 
fact that we do seem to find such theorems in common arith-
metic may serve, here, as a practical confirmation of this obvious 



prediction. To confirm it theoretically, we need only to prove (1) 
that such theorems cannot be decided by reasoning of the first 
degree, and (2) that they can be decided by reasoning of a higher 
degree. (2) would of course be proved by providing such a proof 
of one of these theorems. 

I may say that 1 believe that at least one such theorem will 
shortly be decided by the methods outlined in the text. In other 
words, I believe that I have reduced their decision to a technical 
problem which is well within the capacity of an ordinary mathe-
matician who is prepared, and who has the patronage or other 
means, to undertake the labour. 

Any evenly subverted equation of the second degree might 
be called, alternatively, evenly informed. We can see it over a 
sub-version (turning under) of the surface upon which it is 
written, or alternatively, as an in-formation (formation within) 
of what it expresses. 

Such an expression is thus informed in the sense of having 
its own form within it, and at the same time informed in the 
sense of remembering what has happened to it in the past. 

We need not suppose that this is exactly how memory happens 
in an animal, but there are certainly memories, so-called, con-
structed this way in electronic computers, and engineers have 
constructed such in-formed memories with magnetic relays for 
the greater part of the present century. 

We may perhaps look upon such memory, in this simplified 
in-formation, as a precursor of the more complicated and 
varied forms of memory and information in man and the higher 
animals. We can also regard other manifestions of the classical 
forms of physical or biological science in the same spirit. 

Thus we do not imagine the wave train emitted by an excited 
finite echelon to be exactly like the wave train emitted from an 
excited physical particle. For one thing the wave form from an 
echelon is square, and for another it is emitted without energy. 
(We should need, I guess, to make at least one more departure 
from the form before arriving at a conception of energy on 
these lines.) What we see in the forms of expression at this stage, 



although recognizable, might be considered as simplified 
precursors of what we take, in physical science, to be the real 
thing. Even so, their accuracy and coverage is striking. For 
example, if, instead of considering the wave train emitted by the 
expression in Figure 4 , we consider the expression itself, in its 
quiescent state, we see that it is composed of standing waves. 
If, therefore, we shoot such an expression through its own 
representative space, it will, upon passing a given point, be 
observable at that point as a simple oscillation with a frequency 
proportional to the velocity of its passage. We have thus already 
arrived, even at this stage, at a remarkable and striking precursor 
of the wave properties of material particles. 

We may look upon such manifestations as the formal seeds, 
the existential forerunners, of what must, in a less central state, 
under less certain conditions, come about. There is a tendency, 
especially today, to regard existence as the source of reality, 
and thus as a central concept. But as soon as it is formally 
examined (cf Appendix 2), existence* is seen to be highly 
peripheral and, as such, especially corrupt (in the formal sense) 
and vulnerable. The concept of truth is more central, although 
still recognizably peripheral. If the weakness of present-day 
science is that it centres round existence, the weakness of 
present-day logic is that it centres round truth. 

Throughout the essay, we find no need of the concept of 
truth, apart from two avoidable appearances (true = open to 
proof) in the descriptive context. At no point, to say the least, 
is it a necessary inhabitant of the calculating forms. These 
forms are thus not only precursors of existence, they are also 
precursors of truth. 

It is, I am afraid, the intellectual block which most of us 
come up against at the points where, to experience the world 
clearly, we must abandon existence to truth, truth to indication, 
indication to form, and form to void, that has so held up the 
development of logic and its mathematics. 

What status, then, does logic bear in relation with mathe-
matics? We may anticipate, for a moment, Appendix 2, from 

* ex = out, stare = stand. Thus to exist may be considered as to 
stand outside, to be exiled. 



which we see that the arguments we used to justify the calculating 
forms (e.g. in the proofs of theorems) can themselves be justified 
by putting them in the form of the calculus. The process of justi-
fication can be thus seen to feed upon itself, and this may com-
prise the strongest reason against believing that the codification 
of a proof procedure lends evidential support to the proofs in 
it. All it does is provide them with coherence. A theorem is no 
more proved by logic and computation than a sonnet is written 
by grammar and rhetoric, or than a sonata is composed by 
harmony and counterpoint, or a picture painted by balance and 
perspective. Logic and computation, grammar and rhetoric, 
harmony and counterpoint, balance and perspective, can be 
seen in the work after it is created, but these forms are, in the 
final analysis, parasitic on, they have no existence apart from, 
the creativity of the work itself. Thus the relation of logic 
to mathematics is seen to be that of an applied science to its 
pure ground, and all applied science is seen as drawing 
sustenance from a process of creation with which it can 
combine to give structure, but which it cannot appropriate. 

Chapter 12 
Let us imagine that, instead of writing on a plane surface, 

we are writing on the surface of the Earth. Ignoring rabbit 
holes, etc, we may take it to be a surface of genus 0. Suppose 
we write 

To make it readable from another planet, we write it large. 
Suppose we draw the outer bracket round the Equator, and 
make the brackets containing b and c follow the coastlines of 
Australia and the South Island of New Zealand respectively. 

Above is how the expression will appear from somewhere 
in the Northern Hemisphere, say London. But let us travel. 



Arriving at Cape Town we see 

Sailing on to Melbourne, we see 

and proceeding from there to Christchurch, we see 

These four expressions are distinct and not equivalent. Thus 
it is evidently not enough merely to write down an expression, 
even on a surface of genus 0 , and expect it to be understood. 
We must also indicate where the observer is supposed to be 
standing in relation to the expression. Writing on a plane, the 
ambiguity is not apparent because we tend to see the expression 
from outside of the outermost bracket. When it is written on 
the surface of a sphere, there may be no means of telling which 
of the brackets is supposed to be outermost. In such a case, 
to make an expression meaningful, we must add to it an indicator 
to present a place from which the observer is invited to regard it. 

We observe in the third experiment an alternative way 
(although here less powerful) of using the principle of relevance. 
By the normal use of the principle we could obliterate the 
additional markings (since every state is identically marked) 
and arrive at the single circle in one step, whereas in the experi-
ment we take the weaker course of obliterating the line of 



distinction between the markings, and then need one more 
step to reach the single circle. 

Note that both of these ways of simplification are different 
from the methods of cancellation and condensation adopted for 
the calculus, although arising from, and thus not inconsistent 
with, them. From the experiment we begin to see in fact how all 
the constellar principles by which we navigate our journeys 
out from and in to the form spring from the ultimate reducibility 
of numbers and voidability of relations. It is only by arresting 
or fixing the use of these principles at some stage that we 
manage to maintain a universe in any form at all, and our 
understanding of such a universe comes not from discovering 
its present appearance, but in remembering what we originally 
did to bring it about. 

In this way the calculus itself can be realized as a direct 
recollection. As we left the central state of the form, proceeding 
outwards and imagewise towards the peripheral condition of 
existence, we saw how the laws of calling and crossing, which 
set the stage of our journey through representative space, 
became fixed stars in the familiar play of time. Our projected 
hopes and fears of their ultimate atonement, which we called 
theorems, became their supporting cast. In the end, as we re-
enter the form, they are all justified and expended. They were 
needed only as long as they were doubted. When they cannot 
be doubted, they can be discarded. 

Returning, briefly, to the idea of existential precursors, we 
see that if we accept their form as endogenous to the less 
primitive structure identified, in present-day science, with 
reality, we cannot escape the inference that what is commonly 
now regarded as real consists, in its very presence, merely of 
tokens or expressions. And since tokens or expressions are 
considered to be of some (other) substratum, so the universe 
itself, as we know it, may be considered to be an expression of a 
reality other than itself. 

Let us then consider, for a moment, the world as described 
by the physicist. It consists of a number of fundamental par-
ticles which, if shot through their own space, appear as waves, 



and are thus (as in Chapter 11), of the same laminated structure 
as pearls or onions, and other wave forms called electromagnetic 
which it is convenient, by Occam's razor, to consider as travelling 
through space with a standard velocity. All these appear bound 
by certain natural laws which indicate the form of their relation-
ship. 

Now the physicist himself, who describes all this, is, in his 
own account, himself constructed of it. He is, in short, made of 
a conglomeration of the very particulars he describes, no more, 
no less, bound together by and obeying such general laws as he 
himself has managed to find and to record. 

Thus we cannot escape the fact that the world we know is 
constructed in order (and thus in such a way as to be able) to 
see itself. 

This is indeed amazing. 

Not so much in view of what it sees, although this may 
appear fantastic enough, but in respect of the fact that it can 
see at all. 

But in order to do so, evidently it must first cut itself up into 
at least one state which sees, and at least one other state which 
is seen. In this severed and mutilated condition, whatever it 
sees is only partially itself. We may take it that the world 
undoubtedly is itself (i.e. is indistinct from itself), but, in any 
attempt to see itself as an object, it must, equally undoubtedly, 
act* so as to make itself distinct from, and therefore false to, 
itself. In this condition it will always partially elude itself. 

It seems hard to find an acceptable answer to the question 
of how or why the world conceives a desire, and discovers an 
ability, to see itself, and appears to suffer the process. That it 
does so is sometimes called the original mystery. Perhaps, in 
view of the form in which we presently take ourselves to exist, 
the mystery arises from our insistence on framing a question 
where there is, in reality, nothing to question. However it 
may appear, if such desire, ability, and sufferance be granted, 
the state or condition that arises as an outcome is, according 

* Cf ayoivioTrjg = actor, antagonist. We may note the identity of 
action with agony. 



to the laws here formulated, absolutely unavoidable. In this 
respect, at least, there is no mystery. We, as universal representa-
tives, can record universal law far enough to say 

and so on, and so on you will eventually construct the 
universe, in every detail and potentiality, as you know it now; 
but then, again, what you will construct will not be all, for 
by the time you will have reached what now is, the universe 
will have expanded into a new order to contain what will 
then be. 

In this sense, in respect of its own information, the universe 
must expand to escape the telescopes through which we, who are 
it, are trying to capture it. which is us. The snake eats itself, 
the dog chases its tail. 

Thus the world, when ever it appears as a physical universe*, 
must always seem to us, its representatives, to be playing a kind 
of hide-and-seek with itself. What is revealed will be concealed, 
but what is concealed will again be revealed. And since we 
ourselves represent it, this occultation will be apparent in our 
life in general, and in our mathematics in particular. What I 
try to show, in the final chapter, is the fact that we really knew 
all along that the two axioms by which we set our course were 
mutually permissive and agreeable. At a certain stage in the 
argument, we somehow cleverly obscured this knowledge from 
ourselves, in order that we might then navigate ourselves through 
a journey of rediscovery, consisting in a series of justifications 
and proofs with the purpose of again rendering, to ourselves, 
irrefutable evidence of what we already knew. 

Coming across it thus again, in the light of what we had to do 
to render it acceptable, we see that our journey was, in its 
preconception, unnecessary, although its formal course, once 
we had set out upon it, was inevitable. 

* unus = one, vertere = turn. Any given (or captivated) universe is 
what is seen as the result of a making of one turn, and thus is the appearance 
of any first distinction, and only a minor aspect of all being, apparent 
and non-apparent. Its particularity is the price wo pay for its visibility. 
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DEFINITION 

Distinction is perfect continence 1 

AXIOMS 

1 The value of a call made again is the value of the call 1 

2 The value of a crossing made again is not the value of 
the crossing 2 

CANONS 

Convention of intention 
What is not allowed is forbidden 3 

Contraction of reference 8 
Let injunctions be contracted to any degree in which they 
can still be followed 

Convention of substitution 8 
In any expression, let any arrangement be changed for 
an equivalent arrangement 

Hypothesis of simplification 9 
Suppose the value of an arrangement to be the value of 
a simple expression to which, by taking steps, it can be 
changed 

Expansion of reference 10 
Let any form of reference be divisible without limit 

Rule of dominance 15 
If an expression e in a space s shows a dominant value 
in s, then the value of e is the marked state. Otherwise, 
the value of e is the unmarked state 
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*T16 If expressions are equivalent in every case of one variable, 

they are equivalent 47 

T17 The primary algebra is complete 50 
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T18 The initials of the primary algebra are independent 53 
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able expression v in e = / i s replaced by an expression w, 
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